Skip to main content

Advertisement

Log in

Cricket calling communities as an indicator of the invasive ant Wasmannia auropunctata in an insular biodiversity hotspot

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species are a major concern for the maintenance of ecosystem services and biodiversity but are difficult to mitigate. Upstream solutions to prevent their impact, including their detection, are needed. Wasmannia auropunctata, an invasive ant living in vagile supercolonies, is especially hard to track and is a major threat for tropical ecosystems and local animal communities. As part of such tropical communities, crickets are sensitive to ecological conditions, easy to collect, detectable and identifiable through their species-specific calls. Here, we evaluated the use of an acoustic community of crickets as an indicator of the presence of W. auropunctata in New Caledonia. We evaluated the dominance of the crickets in the soundscape, describe the cricket community structure and diversity along a shrubland to forest gradient, characterize these cricket communities structure and diversity in the light of ongoing invasion by W. auropunctata, and identify cricket species’ indicators of the invasion. Acoustic recordings collected on 24 sites were described using human-listening and spectrographic visualization. The results demonstrated a clear dominance of the cricket group in the New Caledonian nocturnal soundscapes. Each habitat harbored a specific acoustic cricket community related to specific environmental attributes including vegetation height, daily variation of humidity and temperature. The presence of W. auropunctata was significantly associated with a lower cricket acoustic activity and species richness at night. Of the 19 species detected, four nocturnal species were identified as indicator of non-invaded forests and preforests. This work supports the use of acoustic as an alternative method to detect invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anso J (2016) Maintien à long terme des communautés d’insectes forestiers dans un contexte de changement global: Réponses écologiques des communautés d’Orthoptères dans une succession forestière et face à la progression d’espèces invasives. Dissertation, Ph.D., Ecole Doctorale du Pacifique, Université de la Nouvelle-Calédonie, Nouméa

  • Anso J, Barrabé L, Desutter-Grandcolas L, Jourdan H, Grandcolas P, Dong J, Robillard T (2016a) Old lineage on an old island: Pixibinthus, a new cricket genus endemic to New Caledonia shed light on gryllid diversification in a hotspot of biodiversity. PLoS ONE 11:e0150920

    Article  PubMed  PubMed Central  Google Scholar 

  • Anso J, Jourdan H, Desutter-Grandcolas L (2016b) Crickets (Insecta, Orthoptera, Grylloidea) from southern New Caledonia, with descriptions of new taxa. Zootaxa 4124:1–92

    Article  PubMed  Google Scholar 

  • Baselga A (2008) Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography 31:263–271

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Berman M, Andersen AN, Hély C, Gaucherel C (2013) Overview of the distribution, habitat association and impact of exotic ants on native ant communities in New Caledonia. PLoS ONE 8:e67245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boelman NT, Asner GP, Hart PJ, Martin RE (2007) Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecol Appl 17:2137–2144

    Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bormpoudakis D, Sueur J, Pantis JD (2013) Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landsc Ecol 28:495–506

    Article  Google Scholar 

  • Chiarucci A, Bacaro G, Rocchini D, Fattorini L (2008) Discovering and rediscovering the sample-based rarefaction formula in the ecological literature. Community Ecol 9:121–123

    Article  Google Scholar 

  • Chintauan-Marquier IC, Legendre F, Hugel S, Robillard T, Grandcolas P, Nel A, Zuccon D, Desutter-Grandcolas L (2016) Laying the foundations of evolutionary and systematic studies in crickets (Insecta, Orthoptera): a multilocus phylogenetic analysis. Cladistics 32:54–81

    Article  Google Scholar 

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:356–3574

    Article  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  • Desutter-Grandcolas L (1992) Les Phalangopsidae de Guyane française (Orthoptères, Grylloidea): systématique, éléments de phylogénie et de biologie. Bulletin du Muséum national d’Histoire naturelle, Paris 14:93–177

    Google Scholar 

  • Desutter-Grandcolas L, Anso J, Jourdan H (2016) Crickets of New Caledonia (Insecta, Orthoptra, Grylloidea): a key to genera, with diagnoses of extant genera and descriptions of new taxa. Zoosystema 38:405–452

    Article  Google Scholar 

  • Diwakar S, Balakrishnan R (2007) The assemblage of acoustically communicating crickets of a tropical evergreen forest in southern India: call diversity and diel calling patterns. Int J Anim Sound Its Rec 16:113–135

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Fartmann T, Krämer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Ind 20:337–344

    Article  Google Scholar 

  • Frazer GW, Canham C, Lertzman K (1999) Gap light analyzer (GLA). Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. Users manual and program documentation. Version 2. Simon Fraser University, Burnaby

    Google Scholar 

  • Gardiner T, Dover J (2008) Is microclimate important for Orthoptera in open landscapes? J Insect Conserv 12:705–709

    Article  Google Scholar 

  • Gasc A, Sueur J, Pavoine S, Pellens R, Grandcolas P (2013) Biodiversity sampling using a global acoustic approach: contrasting sites with microendemics in New Caledonia. PLoS ONE 8:e65311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holway DA (1998) Loss of intraspecific aggression in the success of a widespread invasive social insect. Science 282:949–952

    Article  CAS  PubMed  Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The Causes and Consequences of Ant Invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Article  Google Scholar 

  • Jain M, Balakrishnan R (2011) Microhabitat selection in an assemblage of crickets (Orthoptera: Ensifera) of a tropical evergreen forest in Southern India. Insect Conserv Divers 4:152–158

    Article  Google Scholar 

  • Joo W, Gage SH, Kasten EP (2011) Analysis and interpretation of variability in soundscapes along an urban–rural gradient. Landsc Urban Plan 103:259–276

    Article  Google Scholar 

  • Jourdan H, Sadlier RA, Bauer AM (2001) Little fire ant invasion (Wasmannia auropunctata) as a threat to New Caledonian lizards: evidence from a sclerophyll forest (Hymenoptera: Formicidae). Sociobiology 38:283–299

    Google Scholar 

  • Lach L, Hooper-Bui LM (2010) Consequences of ant invasion. In: Lach L, Parr CL, Abbott K (eds) Ant ecology. Oxford University Press, New York, pp 261–286

    Google Scholar 

  • LaPolla JS, Otte D, Spearman LA (2000) Assessment of the effects of ants on Hawaiian crickets. J Orthopt Res 9:139–148

    Article  Google Scholar 

  • Le Breton J, Chazeau J, Jourdan H (2003) Immediate impacts of invasion by Wasmannia auropunctata (Hymenoptera: Formicidae) on native litter ant fauna in a New Caledonian rainforest. Austral Ecol 28:204–209

    Article  Google Scholar 

  • Legendre P, Legendre LF (2012) Numerical ecology, vol 24. Elsevier, Amsterdam

    Google Scholar 

  • Lellouch L, Pavoine S, Jiguet F, Glotin H, Sueur J (2014) Monitoring temporal change of bird communities with dissimilarity acoustic indices. Methods Ecol Evol 5:495–505

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World’s worst invasive alien species. A selection from the global invasive species database. Published by the invasive species specialist group (ISSG) a specialist group of the species survival commission (SSC) of the world conservation union (IUCN), 12 p. First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004. http://www.issg.org/booklet.pdf

  • Lubin YD (1984) Changes in the native fauna of the Galápagos Islands following invasion by the little red fire ant, Wasmannia auropunctata. Biol J Lin Soc 21:229–242

    Article  Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice IC, van der Maarel E (eds) Theory and models in vegetation science, vol 8, Proceedings of symposium, Uppsala, pp 89–107

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Nattier R, Grandcolas P, Elias M, Desutter-Grandcolas L, Jourdan H, Couloux A, Robillard T (2012) Secondary sympatry caused by range expansion informs on the dynamics of microendemism in a biodiversity hotspot. PLoS ONE 7:e48047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nischk F, Riede K (2001) Bioacoustics of two cloud forest ecosystems in Ecuador compared to a lowland rainforest with special emphasis on singing cricket species. In: Nieder J, Barthlott W (eds) Epiphytes and canopy fauna of the Otongan rainforest (Ecuador), Results of the Bonn-Quito Epiphyte Project, Funded by the Volkswagen Foundation, vol 2, pp 217–242

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens M, Wagner H (2013) Package ‘vegan’. community ecology package, version 2(9). https://CRAN.R-project.org/package=vegan

  • Otte D (1994) The crickets of Hawaii, origin, systematics and evolution. The Orthopterists’ Society and The Academy of Natural Sciences of Philadelphia, Philadelphia

    Google Scholar 

  • Otte D, Alexander RD (1983) The Australian crickets. Monogr Acad Nat Sci Phila 22:1–477

    Google Scholar 

  • Pijanowski BC, Farina A, Gage SH, Dumyahn SL, Krause BL (2011) What is soundscape ecology? An introduction and overview of an emerging new science. Landsc Ecol 26:1213–1232

    Article  Google Scholar 

  • Qi J, Gage SH, Joo W, Napoletano B, Biswas S (2008) Soundscape characteristics of an environment: a new ecological indicator of ecosystem health. In: Ji W (ed) Wetland and water resource modeling and assessment. CRC Press, New York, pp 201–211

    Google Scholar 

  • Riede K (1993) Monitoring biodiversity: analysis of Amazonian rainforest sounds. Ambio 22:546–548

    Google Scholar 

  • Riede K (1997) Bioacoustic diversity and resource partitioning in tropical calling communities. In: Ulrich H (ed) Tropical biodiversity and systematics. Proceedings of the international symposium on biodiversity and systematics in tropical ecosystems, Bonn, pp 275–280

  • Robillard T, Grandcolas P, Desutter-Grandcolas L (2007) A shift toward harmonics for high-frequency calling shown with phylogenetic study of frequency spectra in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae). Can J Zool 85:1264–1274

    Article  Google Scholar 

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Philos Trans R Soc Lond Ser B Biol Sci 340:179–185

    Article  Google Scholar 

  • Schirmel J, Mantilla-Contreras J, Blindow I, Fartmann T (2011) Impacts of succession and grass encroachment on heathland Orthoptera. J Insect Conserv 15:633–642

    Article  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Sueur J, Farina A (2015) Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8:493–502

    Article  Google Scholar 

  • Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS ONE 3:e4065

    Article  PubMed  PubMed Central  Google Scholar 

  • Szinwelski N, Rosa CS, Schoereder JH, Mews CM, Sperber CF (2012) Effects of forest regeneration on crickets: evaluating environmental drivers in a 300-year chronosequence. Int J Zool 2012:1–13

    Article  Google Scholar 

  • Towsey M, Jason W, Ian W, Paul R (2014) The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecol Inf 21:110–119

    Article  Google Scholar 

  • Truskinger A, Cottman-Fields M, Johnson D, Roe P (2013) Rapid scanning of spectrograms for efficient identification of bioacoustic events in big data. In: IEEE (ed) IEEE 9th international conference on science, pp 270–277

  • Tucker D, Gage SH, Williamson I, Fuller S (2014) Linking ecological condition and the soundscape in fragmented Australian forests. Landsc Ecol 29:745–758

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Walker KL (2006) Impact of the little fire Ant, Wasmannia auropunctata, on native forest ants in Gabon. Biotropica 38:666–673

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Rigault (IRD IMBE à Nouméa) and J-F. Julien (MNHN) who provided help for field work and C. Desjonquères for her advice regarding GLMMs. We are grateful for the work of several undergraduate students, M. Aubert, J. Lansiaux, and L. Payandi. We are also grateful to E. Vidal (IRD Noumea) and B. C. Pijanowski (Purdue University) for logistical and financial support. We thank the two anonymous reviewers for their helpful and constructive comments. We would like to thank B. C. Pijanowski and G. Pignotti for their helpful comments to the manuscript. We thank the Province Sud Environment Office (DENV) for collecting permits (Decree 2155-2013/ARR/DENV).

Funding

This study was partly funded by a Ph.D. Grant, ‘Bourse d’encouragement à la recherche universitaire’, attributed to J. Anso by the Government of New Caledonia. This Ph.D. and associated field work was also supported by a funding attributed to J. Anso and H. Jourdan by the Agence Nationale de la Recherche (ANR) through the ERA-Net BiodivERsA Project (FFII, JE 288/7-1). The bioacoustic study was supported by a Grant from the Grand Observatoire du Pacifique Sud: AAP GOPS 2013/‘Bioacoustique des grillons de Nouvelle-Calédonie’. The laboratory procedures were realized through the three research programs: Action Transversale du Muséum (ATM) ‘Biodiversité actuelle et fossile. Crises, stress, restaurations et panchronisme: le message systématique’, ATM ‘Barcode’ and the Labex BCDIV (Diversités biologiques et culturelles) ‘A diachronic study of biodiversity and a test of biogeographic scenarios in New Caledonia as based on field inventories of fossil and present-day insects’. The field work procedure was partly realized through the program: Action Transversale du Muséum (ATM) ‘Formes possibles – Formes réalisées’. The analyses and redaction of the manuscript were partly funded by NSF RCN (#1114945), Purdue University’s Center for the Environment, Wright Forestry Fund of the Department of Forestry and Natural Resources at Purdue University, and the College of Agriculture at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gasc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasc, A., Anso, J., Sueur, J. et al. Cricket calling communities as an indicator of the invasive ant Wasmannia auropunctata in an insular biodiversity hotspot. Biol Invasions 20, 1099–1111 (2018). https://doi.org/10.1007/s10530-017-1612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1612-0

Keywords

Navigation